SimulateSatelliteTracking

This program simulates tracking data (range, range-rate, range-accelerations) between 2 satellites. The range is given by \[ \rho(t) = \left\lVert{\M r_B(t) - \M r_A(t)}\right\rVert = \M e_{AB}(t)\cdot\M r_{AB}(t), \]with $\M r_{AB} = \M r_B - \M r_A$ and the unit vector in line of sight (LOS) direction \[\label{sst.los} \M e_{AB} = \frac{\M r_{AB}}{\left\lVert{\M r_{AB}}\right\rVert}=\frac{\M r_{AB}}{\rho}. \]Range-rates $\dot{\rho}$ and range accelrations $\ddot{\rho}$ are obtained by differentation \[\label{obsRangeRate} \dot{\rho} = \M e_{AB}\cdot\dot{\M r}_{AB} + \dot{\M e}_{AB}\cdot\M r_{AB} = \M e_{AB}\cdot\dot{\M r}_{AB}, \]\[\label{obsRangeAccl} \begin{split} \ddot{\rho} &= \M e_{AB}\cdot\ddot{\M r}_{AB} +\dot{\M e}_{AB}\cdot\dot{\M r}_{AB} = \M e_{AB}\cdot\ddot{\M r}_{AB} + \frac{1}{\rho}\left(\dot{\M r}_{AB}^2-\dot{\rho}^2\right). \\ \end{split} \]with the derivative of the unit vector \[ \dot{\M e}_{AB}=\frac{d}{dt}\left(\frac{\M r_{AB}}{\rho}\right) =\frac{\dot{\M r}_{AB}}{\rho}-\frac{\dot{\rho}\cdot\M r_{AB}}{\rho^2} =\frac{1}{\rho}\left({\dot{\M r}_{AB}-\dot{\rho}\cdot\M e_{AB}}\right). \]The inputfileOrbits must contain positions, velocities, and acceleration (see OrbitAddVelocityAndAcceleration).

NameTypeAnnotation
outputfileSatelliteTracking
filename
inputfileOrbit1
filename
inputfileOrbit2
filename
This program is parallelized.