ParametrizationGravity
This class gives a parametrization of the time depending gravity field. Together with the class oberservation it will be used to set up the design matrix in a least squares adjustment. If multiple parametrizations are given the coefficients in the parameter vector are sequently appended.
SphericalHarmonics
The potential $V$ is parametrized by a expansion of (fully normalized) spherical harmonics \[ V(\lambda,\vartheta,r) = \frac{GM}{R}\sum_{n=0}^\infty \sum_{m=0}^n \left(\frac{R}{r}\right)^{n+1} \left(c_{nm} C_{nm}(\lambda,\vartheta) + s_{nm} S_{nm}(\lambda,\vartheta)\right). \]You can set the range of degree $n$ with minDegree and maxDegree. The sorting sequence of the potential coefficients in the parameter vector can be defined by numbering.
The total count of parameters is $(n_{max}+1)^2-n_{min}^2$ and the parameter names are
*:sphericalHarmonics.c_<degree>_<order>:*:*
,-
*:sphericalHarmonics.s_<degree>_<order>:*:*
.
Name | Type | Annotation |
---|---|---|
minDegree | uint | |
maxDegree | uint | |
GM | double | Geocentric gravitational constant |
R | double | reference radius |
numbering | sphericalHarmonicsNumbering | numbering scheme |
RadialBasis
The potential $V$ is represented by a sum of space localizing basis functions \[ V(\M x) = \sum_i a_i \Phi(\M x, \M x_i) \]where $a_i$ the coefficients which has to be estimated and $\Phi$ are the basis functions given by isotropic radial kernel functions \[ \Phi(\cos\psi,r,R) = \sum_n \left(\frac{R}{r}\right)^{n+1} k_n\sqrt{2n+1}\bar{P}_n(\cos\psi). \]The basis functions are located on a grid $\M x_i$ given by grid. This class can also be used to estimate point masses if kernel is set to density.
The parameter names are *:radialBasis.<index>.<total count>:*:*
.
Name | Type | Annotation |
---|---|---|
kernel | kernel | shape of the radial basis function |
grid | grid | nodal point distribution |
Temporal
The time variable potential is given by \[ V(\M x,t) = \sum_i V_i(\M x)\Psi_i(t), \]wehre $V_i(\M x)$ is the spatial parametrization of the gravity field and can be choosen with parametrizationGravity. The parametrization in time domain $\Psi_i(t)$ is selected by parametrizationTemporal. The total parameter count is the parameter count of parametrizationTemporal times the parameter count of parametrizationGravity.
Name | Type | Annotation |
---|---|---|
parametrizationGravity | parametrizationGravity | |
parametrizationTemporal | parametrizationTemporal |
LinearTransformation
Parametrization of the gravity field on the basis of a linear transformation of a source parametrization. The linear transformation changes the original solution space represented by pararametrizationGravitySource from \[ \mathbf{l} = \mathbf{A}\mathbf{x} + \mathbf{e} \]to \[ \mathbf{l} = \mathbf{A}\mathbf{F}\mathbf{y} + \mathbf{e} \]through the linear transformation $\mathbf{x}=\mathbf{F}\mathbf{y}$. It follows that the rows of the matrix $\mathbf{F}$ in inputfileTransformationMatrix coincides with the number of parameters in pararametrizationGravitySource. The new parameter count is given by the number of columns in $\mathbf{F}$ and may be smaller, equal or larger than the original parameter count.
The parameter names are *:transformedParameter.<index>.<total count>:*:*
.
Name | Type | Annotation |
---|---|---|
parametrizationGravitySource | parametrizationGravity | |
inputfileTransformationMatrix | filename | transformation matrix from target to source parametrization (rows of this matrix must coincide with the parameter count of the source parametrization) |
EarthquakeOscillation
This class is used to estimate the earthquake oscillation function parameters, i.e. $C_{nlm}$, $\omega_{nlm}$, and $P_{nlm}$. The results describes the variation in the gravitational potential field caused by large earthquakes. \[ C_{lm}(\M t) = \sum_{n=0}^NC_{nlm}(1-\cos(\omega_{nlm}d\M t)\exp(P_{nlm}\omega_{nlm}d\M t)), \]with $\omega_{nlm}=\frac{2\pi}{T_{nlm}}$ and $P_{nlm}=\frac{-1}{2Q_{nlm}}$ . In this equation, $Q_{nlm}$ is the attenuation factor, $n$ is the overtone factor, $m$ is degree, $l$ is order, and $t$ is time after earthquake in second.
The parameter names are
*:earthquakeParameter.c_<degree>_<order>_A:*:*
,-
*:earthquakeParameter.s_<degree>_<order>_A:*:*
, -
*:earthquakeParameter.c_<degree>_<order>_W:*:*
, -
*:earthquakeParameter.s_<degree>_<order>_W:*:*
, -
*:earthquakeParameter.c_<degree>_<order>_P:*:*
, -
*:earthquakeParameter.s_<degree>_<order>_P:*:*
.
Name | Type | Annotation |
---|---|---|
inputInitialCoefficient | filename | initial values for oscillation parameters |
time0 | time | the time earthquake happened |
minDegree | uint | |
maxDegree | uint | |
GM | double | Geocentric gravitational constant |
R | double | reference radius |
numbering | sphericalHarmonicsNumbering | numbering scheme |